Hall Ticket Number:

Code No. : 21805

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (Mech. Engg.: CBCS) I-Semester Main Examinations, January-2018

(Advanced Design & Manufacturing)

Theory of Elasticity and Plasticity

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

1. Find the second invariant of the following stress tensor.

300	200	1007	
300 200	150	300	MPa
100	300	50	

2. Determine the octahedral shear stress for the following stress tensor.

1	100	100	2007	
	100 100 200	-50	100	MPa
	200	100	20	

3. Divide the following deformation tensor into strain tensor and rotation tensor.

[1	2	1		
1 3 2	5	4	Х	10-3
12	1	2		

4. Find out the principal strains for the following strain tensor.

	[1	2	0	
-	2	2 5 0	0	X 10 ⁻³
	0	0.	0	

5. Determine the stress tensor for an isotropic material when the strain tensor is given by

4	3	U		
3	1	0	X	10-3
3	0	0_		

The material constants E = 200 GPa and $\mu = 0.3$.

- 6. State the compatibility equations for a 2-dimensional state of stress.
- 7. A bar is reduced to half of its length by applying compressive force. Calculate the True strain experienced by the body.
- 8. The state of stress at point is given by the following stress tensor.

100	200	1007	
200	150	-50	MPa
100	-50	200	

Find out whether the material yields if the yield strength of material is 300 MPa. Use Von-Mise's criteria.

- 9. What is friction hill?
- 10. Predict the load required for extrusion operation for extruding a billet of 30mm diameter with an extrusion ratio of 10. The extrusion constant is 300 MPa, assume the ideal deformation.

Part-B $(5 \times 8 = 40 Marks)$

- 11. a) Prove that the state of stress at a point is ellipsoid.
 - b) Determine the normal and shear stresses on a plane having two of the direction cosines [6] are 0.3 and 0.4 when the state of stress is given by

1	50	70	100]	
	70	100		MPa
	100	30	150	

[2]

:: 2 ::	Code No. : 21805
12. a) Prove that the first invariant of deviatoric strain	tensor is zero. [2]
b) The strain at a point is given by $ \begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 4 \\ 1 & 4 & 5 \end{bmatrix} $	[6]
i) Divide the above tensor into deviatoric and hyii) Find out the principal components of deviator	
13. a) State the differences between body forces and tr	action forces by giving examples. [2]
b) Deduce the differential equations of equilibrium	for a two dimensional case. [6]
14. a) Discus the kinematic hardening.	[2]
b) Prove that the yield surface of Tresca is regul inclined to the principal axis and has a side of	
15. a) What are the assumptions of slip line field theor	y of plastic flow? [2]
b) Deduce the Henky equations of slip line field th	eory. [6]
16. a) What is plane stress? Deduce the expression condition.	for principal stresses in plane stress [4]
b) Determine the principal strains and the principal $\varepsilon_y = 0.002$ and $\gamma_{xy} = 0.003$.	l plane for the state of strain $\varepsilon_x = 0.001$, [4]
 17. Answer any <i>two</i> of the following: a) Generalized Hook's law for orthotropic mate b) St.Venant's theory of plastic flow. c) Uniform deformation energy theory. 	[4] [4]
ශ්ඥඥානත	